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Boundary S-matrix for the XXZ chain
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Abstract. We compute by means of the Bethe ansatz the boundaryS-matrix for the open
anisotropic spin-12 chain with diagonal boundary magnetic fields in the noncritical regime
(1 > 1). Our result, which is formulated in terms ofq-gamma functions, agrees with the
vertex-operator result of Jimboet al.

1. Introduction

The concept of the boundaryS-matrix in (1+1)-dimensional integrable quantum field theory
was precisely formulated by Ghoshal and Zamolodchikov in [1]. There they also developed
a bootstrap approach for determining suchS-matrices. BoundaryS-matrices can also be
computed for integrable quantum spin chains by a direct Bethe-ansatz approach which was
proposed in [2]†. Until now this method has only been used for isotropic models [2, 6–8].
We recently simplified this method in [9]. In the present paper, we take advantage of this
simplification to analyze ananisotropicmodel, namely the openXXZ spin chain:

H = 1

4

{ N−1∑
n=1

(
σxn σ

x
n+1+ σyn σ yn+1+ coshη σ znσ

z
n+1

)+ sinhη coth(ηξ−) σ z1

+ sinhη coth(ηξ+) σ zN

}
(1)

where the real parametersξ± > 1
2 correspond to boundary magnetic fields. For simplicity,

we restrict our attention to the case1 ≡ coshη > 1, which corresponds to the noncritical
regime in which there is a nonzero gap (see, e.g., [10]). Our result for the boundaryS-
matrix, which is formulated in terms ofq-gamma functions [11], agrees with the result
found by Jimboet al [12] by means of the vertex operator approach. In the limitη → 0,
we recover the results of [2] and [9].

2. The Bethe ansatz and the one-hole state

In this section we review the exact Bethe-ansatz (BA) solution of the openXXZ chain, and
we compute the root and hole density for the BA state consisting of a single hole.

† This method is a generalization of the approach developed by Korepin–Andrei–Destri [3, 4] to calculate bulk
two-particleS-matrices. See also [5].
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The eigenvalues ofH andSz = 1
2

∑N
n=1 σ

z
n are given [13–15] by

E = −1

2
sinh2 η
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α=1

1
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(
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2i
)
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(
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2i
) (2)

Sz = 1
2N −M (3)

whereλ1, · · · , λM satisfy the BA equations
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(We neglect in (2) additional terms which are independent of{λα}.)
Introducing the notation

en(λ) =
sinη

(
λ+ 1

2in
)

sinη
(
λ− 1

2in
) gn(λ) =

cosη
(
λ+ 1

2in
)

cosη
(
λ− 1
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the BA equations take the more compact form

e2ξ+−1(λα) e2ξ−−1(λα) g1(λα) e1(λα)
2N+1 = −

M∏
β=1

e2(λα − λβ) e2(λα + λβ). (6)

Note that the factorg1(λα) is absent in the isotropic limitη→ 0.
Without loss of generality, we restrictη > 0. Moreover, the requirement that BA

solutions correspond to independent BA states leads to the restriction (see [2] and references
therein)

Re(λα) ∈
[

0,
π

2η

]
λα 6= 0,

π

2η
. (7)

Following [9], we now focus on the BA state consisting of a single hole. This state lies
in the sectorN = odd withM = 1

2N − 1
2 and{λα} real. This state hasSz = + 1

2.
Since equation (6) involves only products of phases, it is useful to take the logarithm.

In this way we arrive at the desired form of the BA equations:

h(λα) = Jα (8)

where the so-called counting functionh(λ) is given by

h(λ) = 1

2π

{
(2N + 1)q1(λ)+ r1(λ)+ q2ξ+−1(λ)+ q2ξ−−1(λ)

−
M∑
β=1

[
q2(λ− λβ)+ q2(λ+ λβ)

] }
. (9)

Hereqn(λ) andrn(λ) are odd monotonically increasing functions defined by

qn(λ) = π + i log en(λ) − π < qn(λ) 6 π (10)

rn(λ) = i log gn(λ) − π < rn(λ) 6 π (11)
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and {Jα} are certain integers which serve as ‘quantum numbers’ that parametrize the BA
state (see, e.g., [16]).

In section 3 we shall need the root and hole densityσ(λ) for the one-hole BA state,
which is defined by

σ(λ) = 1

N

dh(λ)

dλ
. (12)

To calculate this quantity, we must pass with care from the sum inh(λ) to an integral.
Indeed, with the help of the Euler–Maclaurin formula for approximating sums by integrals,
and using the fact that the solutionsλ = 0, π/2η of the BA equations are excluded, one
can derive the following general result for a state withν holes†:

1

N

M∑
α=1

g(λα) =
∫ π/2η

0
dλ σ(λ) g(λ)− 1

N

ν∑
α=1

g(λ̃α)− 1

2N

[
g(0)+ g

(
π

2η

)]
(13)

(plus terms that are of higher order in 1/N ), whereg(λ) is an arbitrary function, and{λ̃α}
are the hole rapidities.

Using the above result, we obtain the integral equation

σ(λ) = 2a1(λ)+ 1

N

{
a1(λ)+ b1(λ)+ a2(λ)+ b2(λ)+ a2ξ+−1(λ)+ a2ξ−−1(λ)+ a2(λ− λ̃)

+a2(λ+ λ̃)
}− ∫ π/2η

0
dλ′

[
a2(λ− λ′)+ a2(λ+ λ′)

]
σ(λ′) λ > 0

(14)

whereλ̃ is the hole rapidity, and

an(λ) = 1

2π

d

dλ
qn(λ) = η

π

sinh(ηn)

cosh(ηn)− cos(2ηλ)
(15)

bn(λ) = 1

2π

d

dλ
rn(λ) = η

π

sinh(ηn)

cosh(ηn)+ cos(2ηλ)
= an

(
λ± π

2η

)
. (16)

Note that thebn(λ) terms are absent from the integral equation in the isotropic limit. The
b1 term originates from the factorg1 in the BA equations (6), and theb2 term originates
from the last term in (13).

The symmetric densityσs(λ) defined by

σs(λ) =
{
σ(λ) λ > 0

σ(−λ) λ < 0
(17)

can now readily be found with the help of Fourier transforms, for which we use the following
conventions:

f (λ) = η

π

∞∑
k=−∞

e−2iηkλf̂ (k) f̂ (k) =
∫ π/2η

−π/2η
dλ e2iηkλf (λ). (18)

Indeed, we find that

σs(λ) = 2s(λ)+ 1

N
r(+)(λ) (19)

† The argument is a slight modification of that presented in the appendix of [2].
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where

r(+)(λ) = s(λ)+K(λ)+ J (λ)+ L(λ)+ J (+)+ (λ)+ J (+)− (λ)+ J (λ− λ̃)+ J (λ+ λ̃)
(20)

and

ŝ = â1

1+ â2
Ĵ = â2

1+ â2
Ĵ
(+)
± =

â2ξ±−1

1+ â2
K̂ = b̂1

1+ â2
L̂ = b̂2

1+ â2

(21)

with

ân(k) = e−ηn|k| b̂n(k) = (−)k ân(k). (22)

Note that the Fourier series forJ (+)± (λ) converges forξ± > 1
2.

3. The boundary S-matrix

The boundaryS-matrix has the diagonal form

K(λ̃, ξ±) =
(
α(λ̃, ξ±) 0

0 β(λ̃, ξ±)

)
. (23)

The matrix elementsα(λ̃, ξ±) andβ(λ̃, ξ±) are the boundary scattering amplitudes for one-
hole states withSz = + 1

2 andSz = − 1
2, respectively.

We first computeα(λ̃, ξ±). Setting

α(λ̃, ξ±) = eiφ(λ̃,ξ±) (24)

by a calculation completely analogous to that in [9] we obtain the result

8(+)(λ̃) ≡ φ(λ̃, ξ+)+ φ(λ̃, ξ−) = 2π
∫ λ̃

0
r(+)(λ) dλ+ constant. (25)

Recalling the result (20) forr(+)(λ), and using the fact that∫ λ̃

0

[
J (λ− λ̃)+ J (λ+ λ̃)] dλ =

∫ λ̃

0
2J (2λ) dλ (26)

we obtain

φ(λ̃, ξ±) = π
∫ λ̃

0

[
s(λ)+K(λ)+ J (λ)+ L(λ)+ 2J (2λ)+ 2J (+)± (λ)

]
dλ. (27)

We now use equations (18), (21), (22) to write the integrand explicitly as a Fourier series.
Performing theλ integration, using the identity

∞∑
k=1

e−2ηkx

1+ e−2ηk

1

k
= log

[
0q4( 1

2x)

0q4

(
1
2(x + 1)

)]− 1

2
log(1− q4) (28)

whereq = e−η and0q(x) is theq-analogue of the Euler gamma function (see the appendix),
and also using theq-analogue of the duplication formula [11]

0q(2x) 0q2( 1
2) = (1+ q)2x−1 0q2(x) 0q2(x + 1

2) (29)
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we obtain the following result forα(λ̃, ξ±) (up to a rapidity-independent phase factor):

α(λ̃, ξ±) = q−4iλ̃ 0q8

(− 1
2iλ̃+ 1

4

)
0q8

(
1
2iλ̃+ 1

4

) 0q8

(
1
2iλ̃+1

)
0q8

(− 1
2iλ̃+1

) 0q4

(− 1
2iλ̃+ 1

4(2ξ± − 1)
)

0q4

(
1
2iλ̃+ 1

4(2ξ± − 1)
)

× 0q4

(
1
2iλ̃+ 1

4(2ξ±+1)
)

0q4

(− 1
2iλ̃+ 1

4(2ξ±+1)
) . (30)

We now turn to the computation ofβ(λ̃, ξ±), for which we must consider a one-hole
state withSz = − 1

2. Instead of taking the pseudovacuum to be the ferromagnetic state with
all spins up as we have done so far, we now take the pseudovacuum to be the ferromagnetic
state with all spins down. The expression (2) for the energy eigenvalues remains the same,
the expression (3) for theSz eigenvalues becomes

Sz = M − 1
2N (31)

and there is a changeξ± → −ξ± in the BA equations (4) [15].
We focus on the BA state consisting of one hole (M = 1

2N − 1
2 with {λα} real), which

evidently hasSz = − 1
2. The corresponding functionr(−)(λ) is the same asr(+)(λ) (see

equation (20)), except thatJ (+)± (λ) is now replaced byJ (−)± (λ), with the Fourier transform

Ĵ
(−)
± = −

â2ξ±+1

1+ â2
. (32)

We observe that

β(λ̃, ξ−) β(λ̃, ξ+)

α(λ̃, ξ−) α(λ̃, ξ+)
= exp

(
2π i

∫ λ̃

0

[
r(−)(λ)− r(+)(λ)] dλ

)
. (33)

Using the identity

J
(−)
± (λ)− J (+)± (λ) = −a2ξ±−1(λ) (34)

we conclude that

β(λ̃, ξ±)

α(λ̃, ξ±)
= −e2ξ±−1(λ̃). (35)

We have fixed the sign in (35) by demanding thatK(λ̃, ξ±) be proportional to the unit
matrix for λ̃ = 0.

4. Discussion

Our final result for the boundaryS-matrix of theXXZ chain is

K(λ̃, ξ±) = α(λ̃, ξ±)
(

1 0

0 −e2ξ±−1(λ̃)

)
(36)

whereα(λ, ξ±) is given by equation (30). It can be shown that this result agrees with that
found by Jimboet al [12] by means of the vertex operator approach. In the isotropic limit
η → 0, we see thatq → 1 and0q(x)→ 0(x); hence, we recover the boundaryS-matrix
of theXXX chain [2, 9].

It would be interesting to see if this Bethe-ansatz method can be extended to the critical
regime|q| = 1, which is outside the domain of the vertex operator approach.

TheR-matrix for theXXZ chain is associated with the fundamental representation of
A
(1)
1 . The present work opens the way to calculating boundaryS-matrices for spin chains
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whoseR-matrices are associated with the fundamental representation of any (simply-laced)
affine Lie algebra. For higher representations, the ground state involves complex strings,
and the analysis is more complicated. We hope to address these and related questions in
the near future.
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Appendix

Here we prove the identity
∞∑
k=1

e−2ηkx

1+ e−2ηk

1

k
= log

[
0q4( 1

2x)

0q4

(
1
2(x + 1)

)]− 1

2
log(1− q4) (A1)

whereq = e−η and0q(x) is theq-analogue of the Euler gamma function, which is defined
[11] as

0q(x) = (1− q)1−x
∞∏
j=0

[(
1− q1+j )(
1− qx+j )

]
0< q < 1. (A2)

It is convenient first to consider the sum

S(x) =
∞∑
k=1

e−2ηkx

1+ e−2ηk
. (A3)

Expanding the denominator in an infinite series and then interchanging the order of
summations, we obtain

S(x) =
∞∑
k=1

e−2ηkx
∞∑
n=0

(−)ne−2ηkn (A4)

=
∞∑
n=0

(−)n
∞∑
k=1

e−2ηk(x+n) (A5)

=
∞∑
m=0

{
e−2η(x+2m)

1− e−2η(x+2m)
− e−2η(x+2m+1)

1− e−2η(x+2m+1)

}
(A6)

= 1

logq4

[
ψq4

(
x

2

)
− ψq4

(
x + 1

2

)]
(A7)

where

ψq(x) = d

dx
log0q(x) (A8)

= − log(1− q)+ logq
∞∑
j=0

qx+j

1− qx+j . (A9)

Integrating the result (A7) with respect tox, and evaluating the integration constant by
considering the limitx →∞, we obtain the desired identity (A1).
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